197 research outputs found

    Developments in Computer Assisted Instruction and Authoring Systems

    Get PDF

    Analysis on Design and Implementation of 4×10 Gb/s WDM-TDM PON with Disparate Receivers

    Full text link
    This article presents a design of wavelength division multiplexing/ Time division Multiplexing (WDM-TDM) in passive optical network with a data rate of 10 Gbps. The implementation has been carried out for varying link distance from 40km to 100km for 4 different wavelengths with a maximum of 32 supporting users with two different receiver photodiodes. The parameters such as BER and the Q-factor for PON network is being analyzed with the link distance. The BER is decreased as the distance of the network is increased when using the APD receivers than PIN receiver. Optimal value of BER is obtained for a distance of 97 Km in APD and 96 Km in pin receiver

    An Estimate of the Numbers and Density of Low-Energy Structures (or Decoys) in the Conformational Landscape of Proteins

    Get PDF
    The conformational energy landscape of a protein, as calculated by known potential energy functions, has several minima, and one of these corresponds to its native structure. It is however difficult to comprehensively estimate the actual numbers of low energy structures (or decoys), the relationships between them, and how the numbers scale with the size of the protein.We have developed an algorithm to rapidly and efficiently identify the low energy conformers of oligo peptides by using mutually orthogonal Latin squares to sample the potential energy hyper surface. Using this algorithm, and the ECEPP/3 potential function, we have made an exhaustive enumeration of the low-energy structures of peptides of different lengths, and have extrapolated these results to larger polypeptides.We show that the number of native-like structures for a polypeptide is, in general, an exponential function of its sequence length. The density of these structures in conformational space remains more or less constant and all the increase appears to come from an expansion in the volume of the space. These results are consistent with earlier reports that were based on other models and techniques

    Using neural networks and evolutionary information in decoy discrimination for protein tertiary structure prediction

    Get PDF
    Background: We present a novel method of protein fold decoy discrimination using machine learning, more specifically using neural networks. Here, decoy discrimination is represented as a machine learning problem, where neural networks are used to learn the native-like features of protein structures using a set of positive and negative training examples. A set of native protein structures provides the positive training examples, while negative training examples are simulated decoy structures obtained by reversing the sequences of native structures. Various features are extracted from the training dataset of positive and negative examples and used as inputs to the neural networks.Results: Results have shown that the best performing neural network is the one that uses input information comprising of PSI-BLAST [1] profiles of residue pairs, pairwise distance and the relative solvent accessibilities of the residues. This neural network is the best among all methods tested in discriminating the native structure from a set of decoys for all decoy datasets tested. Conclusion: This method is demonstrated to be viable, and furthermore evolutionary information is successfully used in the neural networks to improve decoy discrimination

    From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions

    Get PDF
    ©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein

    Knowledge-based energy functions for computational studies of proteins

    Full text link
    This chapter discusses theoretical framework and methods for developing knowledge-based potential functions essential for protein structure prediction, protein-protein interaction, and protein sequence design. We discuss in some details about the Miyazawa-Jernigan contact statistical potential, distance-dependent statistical potentials, as well as geometric statistical potentials. We also describe a geometric model for developing both linear and non-linear potential functions by optimization. Applications of knowledge-based potential functions in protein-decoy discrimination, in protein-protein interactions, and in protein design are then described. Several issues of knowledge-based potential functions are finally discussed.Comment: 57 pages, 6 figures. To be published in a book by Springe

    Protein mimetic amyloid inhibitor potently abrogates cancer-associated mutant p53 aggregation and restores tumor suppressor function

    Get PDF
    Missense mutations in p53 are severely deleterious and occur in over 50% of all human cancers. The majority of these mutations are located in the inherently unstable DNA-binding domain (DBD), many of which destabilize the domain further and expose its aggregation-prone hydrophobic core, prompting self-assembly of mutant p53 into inactive cytosolic amyloid-like aggregates. Screening an oligopyridylamide library, previously shown to inhibit amyloid formation associated with Alzheimer\u2019s disease and type II diabetes, identified a tripyridylamide, ADH-6, that abrogates self-assembly of the aggregation-nucleating subdomain of mutant p53 DBD. Moreover, ADH-6 targets and dissociates mutant p53 aggregates in human cancer cells, which restores p53\u2019s transcriptional activity, leading to cell cycle arrest and apoptosis. Notably, ADH-6 treatment effectively shrinks xenografts harboring mutant p53, while exhibiting no toxicity to healthy tissue, thereby substantially prolonging survival. This study demonstrates the successful application of a bona fide small-molecule amyloid inhibitor as a potent\ua0anticancer agent

    Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized

    Get PDF
    Understanding protein structure is of crucial importance in science, medicine and biotechnology. For about two decades, knowledge based potentials based on pairwise distances -- so-called "potentials of mean force" (PMFs) -- have been center stage in the prediction and design of protein structure and the simulation of protein folding. However, the validity, scope and limitations of these potentials are still vigorously debated and disputed, and the optimal choice of the reference state -- a necessary component of these potentials -- is an unsolved problem. PMFs are loosely justified by analogy to the reversible work theorem in statistical physics, or by a statistical argument based on a likelihood function. Both justifications are insightful but leave many questions unanswered. Here, we show for the first time that PMFs can be seen as approximations to quantities that do have a rigorous probabilistic justification: they naturally arise when probability distributions over different features of proteins need to be combined. We call these quantities reference ratio distributions deriving from the application of the reference ratio method. This new view is not only of theoretical relevance, but leads to many insights that are of direct practical use: the reference state is uniquely defined and does not require external physical insights; the approach can be generalized beyond pairwise distances to arbitrary features of protein structure; and it becomes clear for which purposes the use of these quantities is justified. We illustrate these insights with two applications, involving the radius of gyration and hydrogen bonding. In the latter case, we also show how the reference ratio method can be iteratively applied to sculpt an energy funnel. Our results considerably increase the understanding and scope of energy functions derived from known biomolecular structures
    • …
    corecore